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Determination of the elastic constants of nematic liquid crystals by
means of the affine transformation model

M. SIMÕES* and A. DE CAMPOS

Departamento de Fı́sica, Universidade Estadual de Londrina, Campus Universitário, 86051-990 – Londrina (PR),

Brazil

(Received 1 August 2006; accepted 20 February 2007 )

In this paper the affine connection approach will be used to calculate the elastic constants of
nematic liquid crystals. Following this approach, which was originally conceived to compute
the nematic viscosity coefficients, an expression for the elastic constants, without adjustable
free parameters, will be formulated in terms of a temperature dependent metric, whose non-
isotropic part is proportional to the tensorial order parameter of the nematic phase. The
dependence of the elastic constants on the scalar order parameter, in the geometry of the
nematic molecules, and in the anisotropic part of the molecular interaction, will be
determined.

1. Introduction

The determination of the thermal behaviour of elastic

constants of nematic liquid crystals (NLC) [1–3] is a

long-standing problem for which experimental [4–8],

computational [9, 10] and analytical methods [11–17]

have been applied and, for each of these approaches,

new sets of results have been found. Nevertheless,

despite such developments, the understanding of the

elastic constants is not complete; only the leading terms

of their dependence on the scalar order parameters are

firmly established [18] and, even now, the nature of the

anchoring of the molecules of these materials at the

surface of the sample has been the theme of intense

research [19–22]. The main aim of this paper is the

proposition of a geometrical method for the determina-

tion of the dependence of the elastic constants on some

important physical variables like the scalar order

parameter, the geometry of the nematic grains (mole-

cules or micelles) and on the anisotropic interaction

between them. The geometrical affine transformation

model [23–27] will be combined with the fundamentals

of the pseudo-molecular approach [28–31] to produce

an expression free of phenomenological adjustable

parameters that, to our knowledge, for the first time

blends these two approaches to obtain the nematic

elastic constants.

In order to establish a firm starting point for the

combined application of these two approaches, a study

of the fundamentals of the affine connection approach

will be presented. In contrast to the usual procedure, we

will not assume perfect ordering on the director

alignment during our calculations and, in this way,

the dependence on the scalar order parameter will

appear naturally in our calculations. Afterwards,

invariants that contain the Maier–Saupe [32–34] and

Nehring–Saupe [11, 12] interactions, formerly used [28]

in the computation of pseudo-molecular elastic

constants [28], will be submitted to the affine transfor-

mation approach. As a consequence, the dependence

of the elastic constants on the scalar order

parameter, molecular geometry and monopolar and

quadrupolar terms of the molecular interaction will

appear naturally.

2. Fundamentals

There are, in the literature on liquid crystals, many

works dealing with the dependence of the elastic

constants on the order parameter. All of them agrees

that in the case of small deformations the elastic energy

would be expressed as a series in the scalar order

parameter [35]. Nevertheless, usually, the coefficients of

this power expansion would be determined by compar-

ison with the experimental data [18, 29–31], and only

through explicit models for the interaction between the

grains constituting the nematic material could the

physical nature of such coefficients be determined.

The so-called pseudo-molecular models can accomplish

this task [28–31]. Below, we recall some results

previously obtained by them to be compared, ahead,

with our forthcoming results. Firstly, we recall that a*Corresponding author. Email: simoes@uel.br
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pure Maier–Saupe [32–34] term,

EMS~A ~mm:~nnð Þ2, ð1Þ

where A is a constant and ~mm and ~nn represent two

directors separated by a distance ~rr, cannot explain the

three different values experimentally found in the bulk

elastic constants; if the interaction between two

neighbour molecules is restricted to a Maier–Saupe

term, the elastic constants K11 and K22 would become

identical [18, 28]. In order to obtain a distinction

between them, two new hypotheses have been intro-

duced. Firstly, a Nehring–Saupe [11, 12] term

ENS~A ~mm:~nn{3e ~nn:~rrð Þ ~mm:~rrð Þ½ �2 ð2Þ

has been added, where the mixing parameter e was

arbitrarily fixed in the interval 0,e,1. Secondly, it was

also assumed that around a molecule the volume of

integration cannot be spherical, but must be ellipsoidal.

That is, a macroscopic nematic domain does not

interact equally along spherical symmetric surfaces with

the origin in their centres, but along surfaces having

ellipsoidal symmetry, producing a volume of interaction

with such symmetry. With the combined application of

these ideas, in a perfectly aligned condition, an analytic

expression for the bulk contribution to the five elastic

constants of a nematic material was obtained [28]. The

motivation of this work arises from the perception that

the way in which these results were found strongly

resembles the approach used by Hess and co-workers in

the calculation of the viscosity coefficients of a nematic

compound [23–27]. Even formalized in a different

manner and applied to different rheological phenom-

ena, both approaches seem to have the same physical

grounds; in the physics of nematic materials not only

are the molecules non-spherical, but so also are the

symmetries of their interaction. That is, the potential

governing their interactions has the same symmetry of

the nematic domains; it is not spherical but ellipsoidal.

In this work, a combination of the affine connection

method and the pseudo-molecular approach will be

applied to the computation of the elastic constants. In

isolation, the Hess approach has already been used for

the computation of the elastic constants in a sequence of

papers by Osipov and Hess [10, 16, 17]. The essential

improvement of our approach is that a metric descrip-

tion of the nematic phase will be obtained, which, being

dependent on the tensorial order parameter, engenders

a temperature dependent geometry. Pragmatically, our

final expression will reveal the dependence of the elastic

constants in the scalar order parameter, in the geometry

of the nematic cell and in the monopolar and

quadrupolar momenta of the interaction between the

nematic grains.

3. Essentials of the Hess approach

3.1. Transformation rules

According to Hess, the ellipsoidal interaction potential

WE between nematic molecules can be transformed into

a spherical interaction potential WS, once the vector ~rr
connecting two particles is submitted to an affine

transformation, in which the distance between the

particles is expressed in terms of a metric determined

by the non-spherical geometry of the equipotential

surfaces of WE. In mathematical terms,

WE rS
� �

~WS rE
� �

, ð3Þ

where the indexes E and S stand for ellipsoidal and

spherical symmetries, respectively. Namely, the non-

spherical potential, WE, can be replaced by a spherical

potential, WS, if the distance between two points is

given by a metric in which two points on an

equipotential surface are equidistant from the potential

centre. In order to give a specific rule to this

prescription, it was assumed that the distance between

the different points in the nematic sample measured in

spherical and non-spherical metrics are connected by

the rule,

rE
i rE

j ~Eijr
S
i rS

j , ð4Þ

where Eij gives the metric induced by the non-spherical

potential and the sum rule over repeated indexes is

being assumed hereafter. An important aspect of the

Hess approach is the knowledge of how the metric

determines the rules connecting the different coordinate

systems. To obtain these rules a matrix Aij satisfying the

relation,

AikAkj~Eij , ð5Þ

must be obtained because the rule transforming

coordinates becomes,

rE
i ~AikrS

k, ð6Þ

as can be seem by a direct substitution in equation (4).

Furthermore, as the physical laws frequently involve

variations, rules connecting derivatives between the two

systems are also necessary. To obtain this rule, we

observe that equation (6) implies that drE
i ~AikdrS

k.

Consequently,

drS
k

drE
i

~xki, ð7Þ

where xik is the inverse of Akj, i.e.,

xikAkj~dij , ð8Þ
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So,

d

drE
j

~
drS

i

drE
j

d

drS
i

~xij

d

drS
i

: ð9Þ

These rules formalize the affine transformation method;

once a physical quantity is known in a spherically

symmetric system, its expression in the non-spherical

system can be obtained through the application of these

rules. Thus, to begin the application of the Hess

approach to the calculation of the nematic elasticity,

all that remains to be done is the determination of the

matrices Eij, Aij and xij. The derivation of explicit

expressions for these matrices in terms of nematic

parameters is the aim of the next section.

3.2. Ellipsoidal metric

It will be assumed here that the metric E is determined

by the same matrix Ē that transforms a sphere into

an ellipsoid, that is, E5Ē. For this reason, no

notational distinction between them will be used in this

paper. Therefore, given a uniaxial ellipsoid there is

always a local coordinate system in which it assumes the

form,

x2
1

a2
z

x2
2

b2
z

x2
3

b2
~1, ð10Þ

where its three main axis lengths are given, respectively,

by {a, b, b}, each of them pointing in the directions

given, respectively, by the three orthonormal vectors,
~ppd ,~qqd ,~rrdf g, where

~ppd~ 1, 0, 0ð Þ,~qqd~ 0, 1, 0ð Þ,~rrd~ 0, 0, 1ð Þ, ð11Þ

with x1, x2 and x3 the coordinates along them. In

compact form, this ellipsoid can be written as

Ed
ij xixj~1, where,

Ed
ij~

1
a2 0 0

0 1
b2 0

0 0 1
b2

0

B@

1

CA, ð12Þ

being completely characterized by the eigenvalues

1

a2
,

1

b2
,

1

b2

� �
, ð13Þ

and eigenvectors given by equation (11). The indexes d

in Ed
ij and ~ppd ,~qqd ,~rrdf g are used to recall that the

corresponding characteristic matrix Ed
ij is diagonal. In

this way, the matrix Eij is the matrix Ed
ij , submitted to an

arbitrary rotation in which its three orthonormal main

axes are now given by a new set of orthonormal vectors
~pp,~qq,~rrf g.

In an arbitrarily rotated coordinate system, this

ellipsoid can be written as,

Eijyiyj~1, ð14Þ

where [24],

Eij~
1

b2
dij{e pipj

� �
, ð15Þ

is the rotated characteristic matrix of the ellipsoid, and

e~1{
b2

a2
, ð16Þ

is the ellipsoid eccentricity and ~pp corresponds to the

symmetric axis of the uniaxial ellipsoid.

As the condition e50 reduces the ellipsoid to a

sphere, the anisotropy found in the rheological para-

meters can be interpreted as the deformation induced on

the nematic medium by the non-spherical equipotential

surfaces. Consequently, this anisotropy can be quanti-

fied by measuring how much this ellipsoid differs from

an equivalent sphere. To obtain such a sphere we

remember that, according to equation (12), the tensor

characterizing an ellipsoid is a linear function of the

inverse of the square of its axes and, furthermore, it

would be reduced to a sphere if these axes become

equal. Accordingly, the equivalent sphere can be

defined as that for which the radius r satisfies the

relation,

1

r2
~

1

3
Tr Eð Þ~ 1

b2
1{

e

3

� �
: ð17Þ

Therefore, if E is the characteristic matrix of an

ellipsoid, the elements of the characteristic matrix of

the equivalent sphere would be given by Sij5dijTr(E)/3

and, consequently, the ellipsoidal deformation DE could

be defined by the difference between the ellipsoid and its

equivalent sphere,

DEij~Eij{Sij~Eij{
1

3
dijTr Eð Þ, ð18Þ

which, with the use of equations (15) and (17), becomes

DEij~
e

b2

1

3
dij{pipj

� �
: ð19Þ

That is, the ellipsoidal deformation DE is determined by

the product of two distinct terms, e/b2 and

Qij~
1

3
dij{pipj: ð20Þ

This last term is the tensorial component of the

ellipsoidal deformation; formally it coincides with the

quadrupolar momentum [38], having a structure similar

to the tensorial order parameter of a nematic liquid
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crystal [35]. Otherwise, the eccentricity term, e, furnishes

the magnitude of the ellipsoidal anisotropy; different

eccentricities correspond to different molecular shapes;

when e,0, we have that b.a, corresponding to a

discotic phase and, when e.0, we have that a.b,

corresponding to a calamitic phase.

Summarizing, the ellipsoidal matrix can be written as

Eij~Sijz
e

b2
Qij

~
1

3
Tr Eð Þdijz

e

b2
Qij ,

ð21Þ

which will be taken as the metric to be used in

equation (4).

3.3. Order parameter in the metric

As the metric induced by the equipotential surfaces can

be written in terms of a tensorial term which is

structurally similar to the order parameter tensor, it

will be shown that such a similarity can be taken as a
microscopic order parameter that will induce a macro-

scopic temperature-dependent metric. This remarkable

result is the essence of the Hess approach. We will begin

this study by remembering some standard considera-

tions about the meaning of the order parameter and its

construction using microscopic considerations.

The anisotropy of liquid crystal materials can be
observed at two levels, macroscopically and microsco-

pically. On thermodynamic measurements it appears

macroscopically. But, it has a microscopic origin: the

LC domains have an intrinsic anisotropy that, when

averaged, induces the observed macroscopic anisotropy.

This distinct range of anisotropy scales has important

consequences in our next developments; as the metric is

a function of a tensor similar to the order parameter it
will also be subject to such a distinction; its essential

microscopic anisotropy will lead to a metric that

depends on the order parameter. To be precise, let us

distinguish between the microscopic and the macro-

scopic nature of Qij by putting a hat over its vectorial

parameter ~nn when it denotes a microscopic unitary

vector. So, Qij n̂
� �

means that ~̂n̂n is a microscopic random

variable and the associated quantity coincides with what

de Gennes named the microscopic order parameter.

Likewise, Qij(n) means that~nn is a macroscopic variable,

the director, and the corresponding order parameter is a

macroscopic order parameter. The connection between

these two quantities is made by assuming that the

microscopic random variable ~̂n̂n oscillates so rapidly that

when Qij n̂
� �

is averaged, over time and in the

neighbourhood of a point, it determines the macro-

scopic order parameter Qij(n), from which the uniaxial
macroscopic anisotropy can measured. In mathematical

terms,

SQij n̂
� �

T~S Qij nð Þ, ð22Þ

where <x> stands for the statistical average of the

random variable x. As anticipated above, S gives

the intensity by which the random oscillations make

the microscopic anisotropy be observed on a macro-

scopic scale. It is enough to multiply the left side of

the above expression by the macroscopic order para-

meter, Qki(n), and calculate the trace of the resulting

expression,

SQji nð ÞQij n̂
� �

T~S Qji nð ÞQij nð Þ, ð23Þ

to obtain,

S~
3

2
{

1

3
zS ~̂n̂n:~nn
� �2

T
	 


: ð24Þ

This equation is the standard expression for the scalar

order parameter. From it, a simplification frequently

used in liquid crystal physics can be used: the mean field

approximation. According to this, save for the critical

points and self-interaction terms, the correlation

between microscopic order parameters is given by,

SQik m̂mð ÞQkj n̂nð ÞT^SQik m̂mð ÞTSQkj n̂nð ÞT

~S2 Qik mð ÞQkj nð Þ:
ð25Þ

Equations (23) and (25) give the thermal basis of our

subsequent development. They justify the hypothesis

assumed in this work that the metric can be made

temperature dependent. Nevertheless, it is important to

observe that our further development is subject to the

restrictions of validity of the approximation made in

equation (25); it cannot be applied for coincident

points of space and, consequently, for molecular self-

interaction.

So, let us begin by showing how the metric can

become dependent on the order parameter, and conse-

quently also on the temperature. If we take the mean

over the ellipsoidal matrix Eij around the neighbour-

hood of a point we obtain,

SEijT~
1

3
Tr Eð Þdijz

e

b2
SQij n̂

� �
T

~
1

b2
1{

e

3

� �
dijz

e

b2
SQij nð Þ:

ð26Þ

This equation reveals that the metric induced by the

ellipsoidal anisotropy is macroscopically observed to be

dependent on the scalar order parameter and, therefore,

it is determined by the nematic temperature; at the

isotropic phase (S50) the metric is spherical and no
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anisotropy would be observed on macroscopic scales.

As the temperature is reduced, the nematic-isotropic

phase transition creates a non-null S, which induces a

macroscopic anisotropy.

Finally, with this explicit form of Eij the computation

of the tensors Aij and xij is a straightforward exercise. If

it is assumed that

r~1{
b

a
and x~1{

a

b
, ð27Þ

it can be easily demonstrated that

Aij~a0dijza1Qij n̂
� �

,

xij~x0dijzx1Qij n̂
� �

:
ð28Þ

It follows that,

SAijT~a0dijza1SQij nð Þ,

SxijT~x0dijzx1SQij nð Þ,
ð29Þ

where a05(1–r/3)/3, a15r/b, x05(1–x/3)/3, and x15bx.

To complete the definitions that will be used later, we

also define the tensor Hij as the contraction of Aik and

xkj, i.e.

Hij~Aikxkj~h0dijzh1Qij n̂
� �

zh2Qik n̂
� �

Qkj n̂
� �

, ð30Þ

and

SHijT~h0dijzh1SQij nð Þzh2S2Qik nð ÞQkj nð Þ, ð31Þ

where

h0~
1

9
1{

r

3

� �
1{

x

3

� �
,

h1~
1

3
bx 1{

r

3

� �
z

r

b
1{

x

3

� �� �
,

h2~rx:

ð32Þ

Observe that it is exactly on <Hij> that the restrictions

of validity quoted above must be considered.

4. The elastic energy

Since the free energy is a scalar function, it can be

assumed that it can be constructed from the simplest

unitary invariants of the theory. Therefore, tensorial

products of the order parameter, as for example,

Iij p, qð Þ~Qik pð ÞQkj qð Þ, ð33Þ

has been considered as the basic tool for the construc-

tion of invariants [39]. To find the first invariant,

consider the thermal average of the trace of the tensor

SIij n̂, n
� �

T, where n̂ and n are, respectively, microscopic

and macroscopic random variables. It is easily found

that

S~
3

2
Iii n̂, n
� �

~
3

2
{

1

3
zS n̂

!
:~nn

	 
2

T

 !

: ð34Þ

As the trace of an operator is invariant by unitary
transformations, it follows that all observers connected

by unitary transformations should measure the same S.

Nevertheless, this is not the unique invariant that can be

formed with the tensor Iij(p, q); another one occurs

when both of its variables, p and q, are taken as random

variables, Iij m̂, n̂
� �

~Qik m̂
� �

Qkj n̂
� �

. As this is a function

of random variables, only its mean value has thermo-

dynamic meaning. By supposing that the connected part
of the two-point function SQik m̂

� �
Qkj n̂
� �

T can be

neglected and, consequently, it implies that we are not

on a critical point and that each random variable

describes different points of space, we can write

SIij m̂, n̂
� �

T~SQik m̂
� �

TSQkj n̂
� �

T [40]. So, using equa-

tion (12) we arrive at

SIij m̂, n̂
� �

T~S2Qik mð ÞQkj nð Þ

~S2Iij m, nð Þ:
ð35Þ

To obtain a scalar invariant with this expression it is

enough to form its trace,

i1~SIii m̂, n̂
� �

T~S2Iii m, nð Þ

~S2 {
1

3
z ~mm:~nnð Þ2

	 

:

ð36Þ

In this equation i1 express an angular interaction, the

Maier–Saupe interaction. That is, two directors, ~mm and
~nn, localized at different points of the sample, only are

elastically coupled when S?0, otherwise, in the

isotropic phase (S50), they are uncoupled. However,
as its dependence on the relative position of the

directors is not explicit, it would be a poor generator

of energy expressions where an explicit dependence on

the relative distance between the directors is necessary.

This fact can be used to inspire the construction of a

unitary invariant that explicitly contains a dependence

on the radius vector between two nematic molecules. If

we take ~rr~~rr1{~rr2, r1=r2, as the distance between two
nematic domains we observe that the object

i2~SrirjIij m̂, n̂
� �

T~S2rirjIij m, nð Þ ð37Þ

is also invariant by unitary transformations. The full

expression of i2:

i2~
S2

9
~rr2 {3 ~mm:~rrð Þ2z ~nn:~rrð Þ2

� �
z9 ~mm:~rrð Þ ~nn:~rrð Þ ~mm:~nnð Þ

� �
,ð38Þ

reveals that once ~rr2 is a fixed invariant, i2 becomes a
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function of the variables, ~mm:~rr,~nn:~rr and ~mm:~nn, that

correlates orientational order with positional order,

exactly what would be expected from this kind of

invariant. In the remainder of this work, due to that fact

that ~mm~~mm ~rr2ð Þ and ~nn~~nn ~rr1ð Þ, both notations, i1 m̂, n̂
� �

and i1 ~rr1,~rr2ð Þ, will be used according to convenience

(analogously for i2 m̂, n̂
� �

and i2 ~rr1,~rr2ð Þ).

5. Elastic constants

5.1. The Maier–Saupe approximation

Here, all the formalism developed above will be

gathered to compute the elastic constants. This task

will be divided in two parts. Firstly, the contribution of

equation (36), the Maier–Saupe interacting term,

F1~

ð
d3r1d3r2a1 ~rr2{~rr1ð ÞSIii ~rr1,~rr2ð ÞT, ð39Þ

to the elastic energy will be computed, where,

a1~a1 ~rr1,~rr2ð Þ~a1 ~rr1{~rr2ð Þ, r1=r2 is the expansion coef-

ficient of the energy in terms of SIii ~rr1,~rr2ð ÞT. The

contribution of the other term, equation (38), will be

considered later. In the above equation the notation

used so far has been shortened; when microscopic

variables appear inside brackets the duplicity of

notation is avoided and, for example, SIij ~rr1,~rr2ð ÞT is to

be understood as

SIij ~rr1,~rr2ð ÞT~SQik n̂
� �

Qkj m̂
� �

T:SQik ~rr1ð ÞQkj ~rr2ð ÞT, ð40Þ

where m̂:m̂ ~rr2ð Þ and n̂:n̂ ~rr1ð Þ. Observe that in equa-

tion (39), the condition r1?r2 can be fully justified by

the fact that we are computing an elastic energy and,

therefore, considering the interaction between different

points of the sample; self-energy terms have no

contribution to the elastic energy. Previously, this

hypothesis was taken as a restriction to the applicability

of our formulas. Now, it becomes a natural constraint.

In order to apply the affine transformation approach

in equation (39), and calculate the resulting elastic

constants, the change~rr2~~rr1z~rr will be made, giving

Qkj ~rr2ð Þ~Qkj ~rr1z~rrð Þ

&Qkj ~rr1ð ÞzrrLrQkj ~rr1ð Þz
1

2
rrrsLrLsQkj ~rr1ð Þ:

ð41Þ

Using the mean field approximation, as in equa-

tion (25), it is found that

SIij ~rr1,~rr2ð ÞT~SQik ~rr1ð ÞQkj ~rr1z~rrð ÞT

&SQik ~rr1ð ÞQkj ~rr1ð ÞT

zSQik ~rr1ð ÞTSrrLrQkj ~rr1ð ÞT

z
1

2
SQik ~rr1ð ÞTSrrrsLrLsQkj ~rr1ð ÞT

ð42Þ

In this equation the term SQik ~rr1ð ÞQkj ~rr1ð ÞT corresponds

to a self-energy term and, as explained above, can be

disregarded. According to the above reasoning, the

integrals given by equation (39) must be performed

considering that the symmetry of the interacting

potential is ellipsoidal. Nevertheless, through the Hess

affine transformation its elliptical geometry is trans-

formed to a spherical one. The following sequence of

transformations synthesize this procedure for each of

these terms:

rrLr:rE
r

d

drE
r

~ArkxrprS
k

d

drS
p

?HkprkLp,

rrrsLrLs:rE
r rE

s

d

drE
r

d

drE
s

~ArkxrpAslxsqrS
krS

l

d

drS
p

d

drS
q

?HkpHlqrkrlLpLq,

ð43Þ

where the definition given by equation (30) has been

used.

In order not to lose the focus of this work, we

remember that the second term of equation (42) is

linear in the derivative; therefore, it is, at most,

responsible for the cholesteric term. Since, in this

work, the points of interest are the elastic constants, it

will be assumed that our system is not cholesteric. As a

result,

SIij ~rr1,~rr2ð ÞT~
1

2
SrmrlTSHmpTSHlqTSQikT LpLqSQkjT

� �
: ð44Þ

In equation (44) the mean field approximation, equa-

tion (25), has been used and the indication of the

vectors, ~rr and n̂, in Qik ~rr1ð Þ and Qkj n̂
� �

has been

suppressed to simplify the notation. Furthermore, as

rmrl is a second rank symmetric tensor, it could be

written in terms of the natural second rank symmetric

tensors of the theory [18, 28], Qml and dml,

rmrl~AQmlzBdml , ð45Þ

where, as can be easily shown, A52rirjQij/3 and B5r2/3.

So,

SIij ~rr1,~rr2ð ÞT~
1

2
ASQmlTzBdmlð Þ

SHmpTSHlqTSQikT LpLqSQkjT
� �

:

ð46Þ

Hence,

SIij ~rr1,~rr2ð ÞT~
1

2
ASHpmTSQmlTSHlqTzBSHplTSHlqT
� �

SQikTLpLqSQkjT:
ð47Þ
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From this point until the final determination of the

elastic constants the calculations are long, but simple.

Using the definition of Hlm, given by equation (31), we

have

LqLpSQijT~{S LqLpni

� �
njzni LqLpnj

� �
z Lpni

� �
Lqnj

� ��

z Lqni

� �
Lpnj

� ��
,

Lpni

� �2
~ ~nn:~++|~nn
� �2

z ~nn|~++|~nn
� �2

z ~++:~nn
� �2

z~++: ~nn ~++:~nnz~nn|~++|~nn
� �

npnq Lpni

� �
Lqni

� �
~ ~nn|~++|~nn
� �2

,

ð48Þ

and comparing the resulting equations with the Frank

free energy,

F~
1

2

ð

V

d3r K11
~++:~nn
� �2

zK22 ~nn:~++|~nn
� �2

zK33 ~nn|~++|~nn
� �2

�

zK13
~++: ~nn ~++:~nn
� �

{ K22zK24ð Þ~++: ~nn ~++:~nnz~nn|~++|~nn
� �o

,

ð49Þ

its is found that

K11~BhoS2 1z
1

3

2h1

ho

z
A

B

	 

S

	 

,

K22~BhoS2 1z
1

3

2h1

ho

z
A

B

	 

S

	 


K33~BhoS2 1{
1

3

2h1

ho

z
A

B

	 

S

	 


K13~0,

K22zK24~BhoS2 1z
1

3

2h1

ho

z
A

B

	 

S

	 


ð50Þ

where only the cubic terms in S have been retained, and

A and B, being given by,

A~
2

3

ð

V

d3ra1 ~rrð ÞrirjQij,

B~
2

3

ð

V

d3ra1 ~rrð Þr2

ð51Þ

represent the quadrupolar and monopolar contribution

of the interacting potential to the elastic constants

values.

As ho and h1 are functions of e (see equations 32 and

27), we see that according to this model the elastic

constants are determined by the scalar order parameter,

the eccentricity of the nematic molecule/micelle, and its

monopolar and quadrupolar momenta. To our knowl-

edge, an expression containing such elastic constants

dependence has not been published before. Anyway,

this result is inconsistent with the experimental results;

it predicts that K115K22, which disagrees with the

experimental data. Nevertheless, this disagreement is a

known outcome of the Maier–Saupe interaction, which

is not enough to takes care of the diversity of the elastic

constants [28]. In the next section, we will shown that

when the term i2 of equation (38) is considered these

inconsistencies are removed.

5.2. The Nehring–Saupe approximation

Here, the contribution of the term i2 to the elastic

constants will be considered. It is assumed that the

energy can be written as

F2~

ð
d3r1d3r2a2 ~rrð ÞSrirjIij ~rr1,~rr2ð ÞT, ð52Þ

where a2~a1 ~rr1,~rr2ð Þ~a2 ~rr1{~rr2ð Þ is the expansion coeffi-

cient of the energy in terms of SrirjIij ~rr1,~rr2ð ÞT. As above,

it will be assumed that ~rr2~~rr1z~rr, and the affine

connection transformation would be applied to

rirjIij ~rr1,~rr2ð Þ. Hence,

SrirjIijT?SrmrlTSEmiTSEljTSQikTSQkjT

z
1

2
SrnrlrmroTSEmiTSEljTSHnpT

SHoqTSQikT LpLqSQkjT
� �

,

ð53Þ

where, again, we have omitted the cholesteric term.

Now, the term <rnrlrmrl> is rewritten as

SrnrlrmroT~
1

3
SrnrlTSrmroTzSrnrmTSrlroTzSrnroTSrlrmTf g

~
1

3
AQnlzBdnlð Þ AQmozBdmoð Þf

z AQnmzBdnmð Þ AQlozBdloð Þ

z AQnozBdnoð Þ AQlmzBdlmð Þg,

ð54Þ

where equation (45) was used. By putting this relation in

equations (11) and (10), and considering only terms up

to third order in S to avoid a useless and complicated

expression, it is found that

K11~
2

3
coS2 1{

1

6
c1S

	 

,

K22~
1

9
coS2 1{

2

3
c1S

	 

,

K33~
2

3
coS2 1{

1

6
c2S

	 

,

K13~
1

9
coS2 1{

1

3
c3S

	 

,

K22zK24~
4

9
coS2 1z

1

6
c4S

	 

:

ð55Þ
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where

co~h2
ow2

oB2,

c1~
w1

wo

{3
h1

ho

{
A

B
,

c2~7
w1

wo

z9
h1

ho

z8
A

B
,

c3~
w1

wo

z
h1

ho

z
A

B
,

c4~{2
w1

wo

z4
h1

ho

z
A

B
,

ho and h1 have been defined in equation (32), A and B

are defined in equation (51), but with the replacement

a1Ra2, and

w1~
e

b2
,

w2~
1

3
1{

e

3

� �
:

In contrast with the Maier–Saupe case, these equa-

tions present a clear distinction between all elastic

constants; the invariant i2 introduced a clear distinction

between the five elastic constants and, furthermore, the

bulk value of K13 is no longer null.

6. Final remarks and conclusion

In this work, we have used the affine connection model

to make a pseudo-molecular study of the nematic elastic

constants. Our final expressions have revealed their

dependence on the scalar order parameter, the geometry

of the nematic cell, and the first moments of the

interaction between them. We have restricted our

equation to the third-order terms of the scalar order

parameter because the experimental data can hardly go

beyond it. Furthermore, our expression is free of

parameters to be adjusted by means of comparison

with experimental data. Nevertheless, as the momentum

constants, A and B, depend on a specific model for the

interaction between the nematic molecules/micelles they

can also be used as adjustable free parameters.

At this moment we are comparing known experi-

mental data of elastic constants with the predictions

given by equation (55). Part of our experimental results,

some of them suggested by the above developments,

have already been published [41]. At this moment we are

preparing an experimental set of the above elastic

constants values. Our results, which will be published

soon, have revealed excellent agreement between the

above expressions and experiment.

Finally, we would like mention that the use of the

affine connection method in the computation of the

elastic constants reveals the fertility of this approach,

which has been applied here in a context different from

that for which it was originally conceived. Furthermore,

the richness of the obtained result is afforded by the

possibility of taking care of the anisotropy of a nematic

compound through a redefinition of the metric of the

sample, which according to the developments of this

work, becomes temperature dependent.
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